Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Giuseppe Agrifoglio, ${ }^{\text {a }}$

Arquímedes R. Karam, ${ }^{\text {a }}$ Edgar L. Catarí, ${ }^{\text {a }}$ Teresa González ${ }^{\text {b }}$ and Reinaldo Atencio ${ }^{\text {b* }}$
${ }^{\text {a }}$ Laboratorio de Polímeros, Centro de Química, Instituto Venezolano de Investigaciones Científica (IVIC), Apartado 21827, Caracas 1020-A, Venezuela, and ${ }^{\text {b }}$ Laboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científica (IVIC), Apartado 21827, Caracas 1020-A, Venezuela

Correspondence e-mail: ratencio@ivic.ve

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.094$
$w R$ factor $=0.295$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

2,6-Bis(3,4,5-trimethylpyrazol-1-ylmethyl)pyridine

The title compound, $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5}$, adopts pseudo- C_{2} symmetry in which the non-substituted N atoms of the pyrazole rings are on opposite sides of the pyridine plane. The packing involves $\mathrm{C}-\mathrm{H} \cdots \pi, \pi-\pi, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and hydrophobic $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3}$ interactions, which are responsible for the observed columnar arrangement.

Comment

The development of new ligands bearing donor atoms other than phosphorus, in particular nitrogen-containing heterocyclic units, has been receiving increasing interest in the coordination chemistry of transition-metal-based homogeneous catalysis (Togni \& Venanzi, 1994; Nishiyama et al., 1991). In this context, the planar tridentate ligand 2,6-bis(imino)pyridine and its derivatives have attracted great attention in the past few years, owing to their versatile coordination properties that point toward new catalytic applications (Abel et al., 1994; Orrell et al., 1997). Iron(II) and cobalt(II) complexes containing voluminous aryl-substituted bis(imino)pyridine ligands were developed by the Brookhardt (Small et al., 1998) and Gibson groups (Britovsek et al., 1998). Both families of complexes exhibit a very high activity for olefin polymerization. It has also been reported that bis-(imino)pyridine-ruthenium(II) complexes can catalyse the epoxidation of olefins (Cetinkaya et al., 1999). The discovery of this class of olefin polymerization catalysts has provided a great incentive to seek polymerization systems based on the late transition metals (Rieger et al., 2003).

(I)

During the past decade, the synthesis of a new family of tridentate planar ligands based on 2,6-bis(N-pyrazolyl)pyridine has been reported. The interest in involving pyrazole rings arises from their ease of tailoring to meet specific electronic and/or steric effects. These ligands are also structural analogues to $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine; however, the substituents on the pyrazole rings can be easily varied. For example, a fine control of the redox potential of $\mathrm{Ru}^{\mathrm{III}} / \mathrm{Ru}^{\mathrm{II}}$ is available with differing number of methyl groups on the pyrazole ring (Jameson et al., 1989). Another family of tridentate N -donor ligands corresponds to 2,6-bis(pyrazol-1ylmethyl)pyridine. After coordination and as a result of the

Received 22 June 2005 Accepted 12 July 2005 Online 20 July 2005

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement parameter are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
Ball-and-stick representation of the discrete bimolecular self-assembly found in the crystal structure of (I). $\mathrm{C}-\mathrm{H} \cdots \pi$ Interactions are shown as dashed lines. H atoms, other than those involved in these interactions, have been omitted for clarity.
presence of methylene groups, these molecules adopt a nonplanar conformation in which the electronic conjugation between pyrazole and pyridine rings is prevented. Mukherjee's group (Singh et al., 2003) has developed a very rich coordination chemistry with non-planar tridentate and bidentate pyrazole-pyridine systems. We report here the synthesis and crystal structure of a member of this family,

Figure 3
Views of the packing of (I) showing (a) a column extending along the a axis, and (b) a representation of two molecules displaying the $\mathrm{CH}_{3} \cdots \pi$ interactions found in the columns. Only the methyl H atoms involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown.

Figure 4
The columnar stacking in (I), viewed along the a axis.
namely 2,6-bis(3,4,5-trimethylpyrazol-1-ylmethyl)pyridine, (I). Knowledge of the molecular structure offers the possibility of comparing directly structural parameters of the free and coordinated pyrazole-pyridine.

The molecule adopts pseudo- C_{2} symmetry (Fig. 1) in which the non-substituted N atoms of the pyrazole rings are on opposite sides of the pyridine plane. The dihedral angle between the mean planes through the N2/N3/C7-C9 (N2-C9) and N4/N5/C14-C16 (N4-C16) pyrazole rings is $69.2(2)^{\circ}$. These rings are nearly orthogonal to the pyridine ring, the dihedral angles they form being 92.2 (2) and $96.4(2)^{\circ}$, respectively. In this conformation, two intramolecular C $\mathrm{H} \cdots \pi$ interactions (Fig. 2) involving both ortho C atoms of the pyridine ring and the π-electron cloud of the pyrazole units are observed $(\mathrm{H} 4 a \cdots \mathrm{Cg} 1=2.71 \AA$ and $\mathrm{C} 4-\mathrm{H} 4 a \cdots C g 1=$ $125.4^{\circ} ; \mathrm{H} \cdots C g 2=3.00 \mathrm{~A}$ and $\mathrm{C} 2-\mathrm{H} 2 a \cdots C g 2=121.4^{\circ} ; C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 2-\mathrm{C} 9$ and $\mathrm{N} 4-\mathrm{C} 16$ rings, respectively).

The roughly concave shape adopted by (I) allows a centrosymmetric head-to-tail arrangement between two neighbouring molecules, which is predominately sustained by
intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 2), involving the para C atom of the pyridine ring and the $\mathrm{N} 4-\mathrm{C} 16$ pyrazole ring $\left[\mathrm{H} 3 a \cdots C g 2^{\mathrm{i}}=2.95 \AA\right.$ and $\mathrm{C} 3-\mathrm{H} 3 a \cdots C g 2^{\mathrm{i}}=146.3^{\circ}$; symmetry code: (i) $1-x, 1-y, 1-z$]. A hydrophobic methyl-methyl interaction $\left[\mathrm{C} 11 \cdots \mathrm{C} 18^{\mathrm{i}}=3.855(10) \AA\right.$] is present. This assembly generates columnar stacking along the a axis (Fig. 3a) by means of two $\mathrm{CH}_{3} \cdots \pi$ interactions (Fig. 3b) in which the π-electron density corresponds to the pyridine ring $\left[\mathrm{C} 10^{\mathrm{ii} \cdots C g 3}=3.43 \AA\right.$ and $\mathrm{C} 19 \cdots C g 3^{\mathrm{ii}}=3.67 \AA$; $C g 3$ is the centroid of the pyridine ring; symmetry code: (ii) $1+x, y, z]$. The columns are linked by a $\pi-\pi$ interaction between the pyrazole rings of neighbouring molecules $\left[C g 2 \cdots C g 1^{\text {iii }}=\right.$ $4.26 \AA$; symmetry code: (iii) $1+x, \frac{1}{2}-y, 2+z$], and two $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in which the donor is attached to the methylene groups (Table 2). The crystal packing is otherwise dominated by hydrophobic methyl-methyl interactions (Fig. 4).

Experimental

Under a nitrogen atmosphere, 3,4,5-trimethylpyrazole $(2.20 \mathrm{~g}$, $0.02 \mathrm{~mol})$ was added slowly to a suspension of $\mathrm{NaH}(0.48 \mathrm{~g}, 0.02 \mathrm{~mol})$ in tetrahydrofuran (50 ml). The suspension was stirred at room temperature for 1 h , followed by the slow addition of 2,6-bis(chloromethyl)pyridine $(1.76 \mathrm{~g}, 0.01 \mathrm{~mol})$ in tetrahydrofuran $(20 \mathrm{ml})$. The mixture was stirred overnight and filtered through celite. The filtrate was evacuated to dryness and the crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:1 (v / v) at 263 K (yield: $2.42 \mathrm{~g}, 75 \%$; m.p. 433 K). Elemental analysis found: C 69.94 , H 7.62 , N 21.48%; calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5}$: C 70.56, H 7.79, N 21.64\%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.89(s, 6 \mathrm{H}), 2.05(s, 6 \mathrm{H}), 2.15(s, 6 \mathrm{H}), 5.30(s$, $4 \mathrm{H}), 6.57(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(t, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.1,9.4,11.8,54.5,112.0,119.5,136.4,138.1$, 146.8, 157.2.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5}$	$D_{x}=1.158 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=323.44$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 19
$a=6.7834(14) \AA$	\quad reflections
$b=17.953(4) \AA$	$\theta=7.3-16.5^{\circ}$
$c=15.247(3) \AA$	$\mu=0.07 \mathrm{~mm}^{-1}$
$\beta=92.53(3)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1855.0(6) \AA^{3}$	Irregular fragment, colourless
$Z=4$	$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$T_{\min }=0.972, T_{\max }=0.986$
3547 measured reflections
3254 independent reflections
1223 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.130
$$

$$
\theta_{\max }=25.0^{\circ}
$$

$$
h=0 \rightarrow 8
$$

$$
k=0 \rightarrow 21
$$

$$
l=-18 \rightarrow 18
$$

$$
3 \text { standard reflections }
$$ every 150 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.094$
$w R\left(F^{2}\right)=0.295$
$w R\left(F^{2}\right)=0.295$
$S=0.99$
3254 reflections
217 parameters

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

N1-C5	$1.341(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.361(8)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.351(7)$	$\mathrm{C} 1-\mathrm{C} 13$	$1.513(7)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.350(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.382(8)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.357(7)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.380(8)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.445(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.374(8)$
$\mathrm{N} 3-\mathrm{C} 9$	$1.340(7)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.515(7)$
N4-N5	$1.339(6)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.359(8)$
N4-C16	$1.361(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.417(8)$
N4-C13	$1.452(7)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.405(8)$
N5-C14	$1.337(7)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.346(8)$
N3-N2-C6	$118.9(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 13$	$123.8(6)$
C7-N2-C6	$128.0(5)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$114.4(5)$
N5-N4-C13	$119.1(5)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$113.7(5)$
C16-N4-C13	$128.9(5)$	$\mathrm{N} 4-\mathrm{C} 13-\mathrm{C} 1$	$115.3(5)$
N1-C1-C13	$113.5(5)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 a \cdots \mathrm{~N} 5^{\mathrm{i}}$	0.97	2.56	$3.522(8)$	175
$\mathrm{C} 13-\mathrm{H} 13 a \cdots \mathrm{~N} 3^{\mathrm{ii}}$	0.97	2.56	$3.526(8)$	173

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), 0.96 (methyl) and $0.97 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=$ 1.5 (1.2 for aromatic H atoms) times $U_{\mathrm{eq}}(\mathrm{C})$. The size of the selected crystal was relatively small, lying in the lower limit for the four-circle diffractometer used. This, together with the nature of the atoms present in the structure, which involves only light C, N and H atoms, could account for the poor diffraction quality of the crystal, resulting in the small number of observed reflections and high $R_{\text {int }}$, weighted and unweighted R factors.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXTL-NT (Bruker, 1998); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

The authors thank FONACIT-MCT, Venezuela, for financial support (project Nos. 2001000656 and LAB-199700821).

References

Abel, E. W., Hylandas, K. A., Olsen, M. D., Orrell, K. G., Osborne, A. G., Sik, V. \& Ward, G. N. (1994). J. Chem. Soc. Dalton Trans. pp. 1079-1090.

Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Maddox, P. J., McTavish, S. J., Solan, G. A., White, A. J. P. \& Williams, D. J. (1998). Chem. Commun. pp. 849-850.
Bruker (1998). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Cetinkaya, B., Cetinkaya, E., Brookhart, M. \& White, P. S. (1999). J. Mol. Cat. A, 142, 101-112.

organic papers

Jameson, D. L., Blaho, J. K., Kruger, K. T., \& Goldsby, K. A. (1989). Inorg. Chem. 28, 4314-4318.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Nishiyama, N., Kondo, M., Nakamura, T. \& Itoh, R. I. (1991). Organometallics, 31, 500-508.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Orrell, K. G., Osborne, A. G., Sik, V., Webba da Silva, M., Hursthouse, M. B., Hibbs., D. E., Malik, K. M. A. \& Vassilev, N. G. (1997). J. Organomet. Chem. 538, 171-183.
Rieger, B., Saunders Baugh, L., Kacker, S. \& Striegler, S. (2003). Editors. Late Transition Metal Polymerization Catalysis. Weinheim: Wiley-VCH Verlag GmbH.
Singh, S., Mishra, V., Mukherjee, J., Seethalekshmi, N. \& Mukherjee, R. (2003). Dalton. Trans. pp. 3392-3397.
Small, B. J., Brookhardt, M. \& Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049-4050.
Togni, A. \& Venanzi, L. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 497-526.

[^0]: (C) 2005 International Union of Crystallography

